Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of Multiple Injection Strategy for Gasoline Compression Ignition High Performance and Low Emissions in a Light Duty Engine

2022-03-29
2022-01-0457
The increase in regulatory demand to reduce CO2 emissions resulted in a focus on the development of novel combustion modes such as gasoline compression ignition (GCI). It has been shown by others that GCI can improve the overall engine efficiency while achieving soot and NOx emissions targets. In comparison with diesel fuel, gasoline has a higher volatility and has more resistance to autoignition, therefore, it has a longer ignition delay time which facilitates better mixing of the air-fuel charge before ignition. In this study, a GCI combustion system has been tested using a 2.2L compression ignition engine as part of a US Department of Energy funded project. For this purpose, a multiple injection strategy was developed to improve the pressure rise rates and soot emission levels for the same engine out NOx emissions.
Technical Paper

Increasing the Effective AKI of Fuels Using Port Water Injection (Part II)

2022-03-29
2022-01-0434
This is the second part of a study on using port water injection to quantifiably enhance the knock performance of fuels. In the United States, the metric used to quantify the anti-knock performance of fuels is Anti Knock Index (AKI), which is the average of Research Octane Number (RON) and Motor Octane Number (MON). Fuels with higher AKI are expected to have better knock mitigating properties, enabling the engine to run closer to Maximum Brake Torque (MBT) spark timing in the knock limited region. The work done in part I of the study related increased knock tolerance due to water injection to increased fuel AKI, thus establishing an ‘effective AKI’ due to water injection. This paper builds upon the work done in part I of the study by repeating a part of the test matrix with Primary Reference Fuels (PRFs), with iso-octane (PRF100) as the reference fuel and lower PRFs used to match its performance with the help of port water injection.
Technical Paper

Multi-Variable Sensitivity Analysis and Ranking of Control Factors Impact in a Stoichiometric Micro-Pilot Natural Gas Engine at Medium Loads

2022-03-29
2022-01-0463
A diesel piloted natural gas engine's performance varies depending on operating conditions and has performed best under medium to high loads. It can often equal or better the fuel conversion efficiency of a diesel-only engine in this operating range. This paper presents a study performed on a multi-cylinder Cummins ISB 6.7L diesel engine converted to run stoichiometric natural gas/diesel micro-pilot combustion with a maximum diesel contribution of 10%. This study systematically quantifies and ranks the sensitivity of control factors on combustion and performance while operating at medium loads. The effects of combustion control parameters, including the pilot start of injection, pilot injection pressure, pilot injection quantity, exhaust gas recirculation, and global equivalence ratio, were tested using a design of experiments orthogonal matrix approach.
Technical Paper

An Experimental and Computational Study of a Single Diesel Droplet Impinging on an Inclined Dry Surface

2022-03-29
2022-01-0499
Fuel spray interactions with piston surfaces and cylinder walls in internal combustion engines have been extensively studied in the past decades. However, there still exists an imperative knowledge gap on the fundamental understanding of dynamic droplet-wall interactions. Particularly, the impinging angle of droplet has been barely investigated as it renders asymmetrical droplet behaviors. This paper aims to provide detailed data of droplet-inclined surface impingement physics which could further support spray-wall model development. The experimental work of single diesel droplet impinging on an inclined dry surface was conducted under isothermal (25°C) conditions. Various droplet impact angle (φ) was achieved by adjusting surface tilting angle which was set from 0° to 45° in current study. A single diesel droplet impinged onto the inclined surface with different Weber number (around 20 ~ 800).
Technical Paper

Evaluation of Cylinder Pressure Transducer Performance Including the Influence of Mounting Location and Thermal Protection

2022-02-21
2022-01-5014
The piezoelectric cylinder pressure transducer is one of the most critical tools for internal combustion (IC) engine research and development. However, not all cylinder pressure transducers perform equally in every application, and the fidelity of transducers can vary across different models and manufacturers. Even slightly dissimilar models from the same manufacturer can have significantly different performance in areas such as sensitivity and resistance to intra-cycle thermal shock. These performance differences can lead to errors and inconsistencies in the calculation of combustion metrics like mean effective pressure (MEP), the polytropic compression and expansion exponents (PolyC and PolyE), and mass fraction burn (MFB) calculations. The variations can lead to suboptimal hardware and calibration choices during the engine development phase.
Technical Paper

Design and Implementation of An Oxidation Catalyst for A Spark Ignited Two Stroke Snowmobile Engine

2022-01-09
2022-32-0005
The primary goal of this project was to design and implement an oxidation catalyst specific to a high-performance spark ignited two stroke engines to reduce vehicle-out emissions. The primary challenges of two stroke catalysis at high loads include controlling the catalytic reaction temperature as well as minimizing the increase in exhaust back pressure due to the addition of a catalyst. Reaction temperature is difficult to control due to high HC and CO concentrations paired with an excess of oxygen in the exhaust stream. By limiting catalyst conversion efficiency, the reaction temperatures were controlled. Two stroke engines are also inherently sensitive to changes in exhaust back pressure and therefore location and sizing of the catalyst are key design considerations. Because of these challenges significant effort was directed toward developing the two-stroke specific catalyst design process.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (6S-GCI) Engine Combustion - Part III

2021-04-06
2021-01-0401
The aim of this paper is to computationally investigate the combustion behavior and energy recovery processes of a six-stroke gasoline compression ignition (6S-GCI) engine that employs a continuously variable valve duration (CVVD) technique, under highly diluted, low-temperature combustion (LTC) conditions. The effects of variation of parameters concerning injection spray targeting (number of fuel injector holes. injector nozzle size and spray included angle) and combustion chamber geometry (piston bowl design) are analyzed using an in-house 3D CFD code coupled with high-fidelity physical sub-models with the Chemkin library in conjunction with a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel.
Technical Paper

Sensor Fusion Approach for Dynamic Torque Estimation with Low Cost Sensors for Boosted 4-Cylinder Engine

2021-04-06
2021-01-0418
As the world searches for ways to reduce humanity’s impact on the environment, the automotive industry looks to extend the viable use of the gasoline engine by improving efficiency. One way to improve engine efficiency is through more effective control. Torque-based control is critical in modern cars and trucks for traction control, stability control, advanced driver assistance systems, and autonomous vehicle systems. Closed loop torque-based engine control systems require feedback signal(s); indicated mean effective pressure (IMEP) is a useful signal but is costly to measure directly with in-cylinder pressure sensors. Previous work has been done in torque and IMEP estimation using crankshaft acceleration and ion sensors, but these systems lack accuracy in some operating ranges and the ability to estimate cycle-cycle variation.
Technical Paper

Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

2021-04-06
2021-01-0426
Low temperature combustion (LTC) of diesel fuel offers a path to low engine emissions of nitrogen oxides (NOx) and particulate matter (PM), especially at low loads. Borescopic optical imaging offers insight into key aspects of the combustion process without significantly disrupting the engine geometry. To assess LTC combustion, two-colour pyrometry can be used to quantify local temperatures and soot concentrations (KL factor). High sensitivity photo-multiplier tubes (PMTs) can resolve natural luminosity down to low temperatures with adequate signal-to-noise ratios. In this work the authors present the calibration and implementation of a borescope-based system for evaluating low luminosity LTC using spatially resolved visible flame imaging and high-sensitivity PMT data to quantify the luminous-area average temperature and soot concentration for temperatures from 1350-2600 K.
Technical Paper

Engine On/Off Optimization for an xHEV during Charge Sustaining Operation on Real World Driving Routes Using Connectivity Data

2021-04-06
2021-01-0433
This paper presents a methodology that optimizes the periods of engine operation on a selected route for a Plug-in Hybrid Electric Vehicle (PHEV) or Hybrid Electric Vehicle (HEV) using Connected Vehicle data to minimize energy consumption. The study was conducted using a Reduced-Order Powertrain model of second-generation Chevrolet Volt. The method utilizes the Backward Induction Dynamic Programming algorithm to come up with an optimal control mode matrix of engine operation along the selected route for various battery states of charge. The objective of this method is to make use of Vehicle Connectivity to minimize the energy utilization of an HEV by using the speed and elevation profile of a selected route transmitted to the vehicle via V2X communication systems.
Technical Paper

A Novel Methodology to Characterize the Thermal Behavior of Automotive Seats

2021-04-06
2021-01-0204
An automobile seat’s thermal performance can be challenging to quantify since it requires comprehensive human subject testing. Seat manufacturers must rely on subjective ratings to understand how the construction of a seat and its underlying heating and cooling technology may compare to other seats. Other factors may influence seat ratings published by global marketing information services companies (e.g., JD Power and Associates). In particular, occupants may be biased by the vehicle class in which a seat is installed and by how much the contribution of a specific vehicle’s HVAC system performance affects the perception of seat thermal comfort. Therefore, there is a need for an objective testing methodology that does not rely on human participants but is still capable of producing a thermal performance rating in terms of established thermal comfort scales.
Technical Paper

Characterization of Methane Emissions from a Natural Gas-Fuelled Marine Vessel under Transient Operation

2021-04-06
2021-01-0631
Natural gas is an increasingly attractive fuel for marine applications due to its abundance, lower cost, and reduced CO2, NOx, SOx, and particulate matter (PM) emissions relative to conventional fuels such as diesel. Methane in natural gas is a potent greenhouse gas (GHG) and must be monitored and controlled to minimize GHG emissions. In-use GHG emissions are commonly estimated from emission factors based on steady state engine operation, but these do not consider transient operation which has been noted to affect other pollutants including PM and NOx. This study compares methane emissions from a coastal marine vessel during transient operation to those expected based on steady state emission factors. The exhaust methane concentration from a diesel pilot-ignited, low pressure natural gas-fuelled engine was measured with a wavelength modulation spectroscopy system, during periods of increasing and decreasing engine load (between 3 and 90%).
Technical Paper

A Numerical Study for the Effect of Liquid Film on Soot Formation of Impinged Spray Combustion

2021-04-06
2021-01-0543
Spray impingement is an important phenomenon that introduces turbulence into the spray that promotes fuel vaporization, air entrainment and flame propagation. However, liquid impingement on the surface leads to wall-wetting and film deposition. The film region is a fuel-rich zone and it has potentials to produce higher emission. Film deposition in a non-reacting spray was studied previously but not in a reacting spray. In the current study, the film deposition of a reacting diesel spray was studied through computational fluid dynamic (CFD) simulations under a variety of ambient temperatures, gas compositions and impinging distances. Characteristics of film mass, distribution of thickness, soot formation and temperature distributions were investigated. Simulation results showed that under the same impinging distance, higher ambient temperature reduced film mass but showed the same liquid film pattern.
Journal Article

Supervised Terrain Classification with Adaptive Unsupervised Terrain Assessment

2021-04-06
2021-01-0250
Off road navigation demands ground robots to traverse complex and often changing terrain. Classification and assessment of terrain can improve path planning strategies by reducing travel time and energy consumption. In this paper we introduce a terrain classification and assessment framework that relies on both exteroceptive and proprioceptive sensor modalities. The robot captures an image of the terrain it is about to traverse and records corresponding vibration data during traversal. These images are manually labelled and used to train a support vector machine (SVM) in an offline training phase. Images have been captured under different lighting conditions and across multiple locations to achieve diversity and robustness to the model. Acceleration data is used to calculate statistical features that capture the roughness of the terrain whereas angular velocities are used to calculate roll and pitch angles experienced by the robot.
Journal Article

Increasing the Effective AKI of Fuels Using Port Water Injection (Part I)

2021-04-06
2021-01-0470
Anti-knock index (AKI) is a metric that can be used to quantify the anti-knock performance of a fuel and is the metric used in the United States. AKI is the average of Research Octane Number (RON) and Motor Octane Number (MON), which are calculated for every fuel on a Cooperative Fuel Research (CFR) engine under controlled conditions according to ASTM test procedures. Fuels with higher AKI have better knock mitigating properties and can be run with a combustion phasing closer to MBT in the knock limited operating region of a gasoline engine. However, fuels with higher AKI tend to be costlier and less environmentally friendly to produce. As an alternative, the anti-knock characteristics of lower AKI fuels can be improved with water injection. In this sense, the water injection increases the ‘effective AKI’ of the fuel.
Journal Article

Fuel Effects on the Propensity to Establish Propagating Flames at SPI-Relevant Engine Conditions

2021-04-06
2021-01-0488
In order to further understand the sequence of events leading to stochastic preignition in a spark-ignition engine, a methodology previously developed by the authors was used to evaluate the propensity of a wide range of fuels to establishing propagating flames under conditions representative of those at which stochastic preignition (SPI) occurs. The fuel matrix included single component hydrocarbons, binary mixtures, and real fuel blends. The propensity of each fuel to establish a flame was correlated to multiple fuel properties and shown to exhibit consistent blending behaviors. No single parameter strongly predicted a fuel’s propensity to establish a flame, while multiple reactivity-based parameters exhibited moderate correlation. A two-stage model of the flame establishment process was developed to interpret and explain these results.
Journal Article

Coordinated Torque, Energy and Clutch Control Strategy for Downshifts in P2 Parallel xHEV Powertrains

2021-04-06
2021-01-0696
This paper describes a methodology for investigating the controls coordination of clutch and propulsion torque sources relative to clutch energy, electrification energy consumption and output torque profile for offgoing controlled downshifts in P2 parallel xHEV powertrain configurations. The focus is on an 8 speed planetary automatic transmission, but the approach is equally applicable to any powerflow design with clutch-to-clutch shifting. The modeling technique is for an overall control strategy relative to achieving a targeted transmission input speed profile. A reduced order model of the transmission system is presented that accounts for input shaft acceleration and compensation of inertial contributions to offgoing clutch torque and transmission output torque.
Technical Paper

A Machine Learning Modeling Approach for High Pressure Direct Injection Dual Fuel Compressed Natural Gas Engines

2020-09-15
2020-01-2017
The emissions and efficiency of modern internal combustion engines need to be improved to reduce their environmental impact. Many strategies to address this (e.g., alternative fuels, exhaust gas aftertreatment, novel injection systems, etc.) require engine calibrations to be modified, involving extensive experimental data collection. A new approach to modeling and data collection is proposed to expedite the development of these new technologies and to reduce their upfront cost. This work evaluates a Gaussian Process Regression, Artificial Neural Network and Bayesian Optimization based strategy for the efficient development of machine learning models, intended for engine optimization and calibration. The objective of this method is to minimize the size of the required experimental data set and reduce the associated data collection cost for engine modeling.
Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
X